Vektoralgebra

Die Einführung von Einheitsvektoren

Mathematik für Ingenieure und Naturwissenschaftler I Lothar Papula, Seite 54, ff.

Betrachtet wird ein Vektor \vec{a} im Raum. Dadurch führt die Projektion des Vektors auf die drei Koordinatenachsen \vec{a}_x , \vec{a}_y und \vec{a}_z . Der Vektor \vec{a} ist also ein Summenvektor der **Vektorkomponenten** $\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z$. Die Vektorkomponenten von \vec{a} werden durch **Einheitsvektoren** wie folgt ausgedrückt: $\vec{a}_x = a_x \vec{e}_x$, $\vec{a}_y = a_y \vec{e}_y$, $\vec{a}_z = a_z \vec{e}_z$.

Der Vektor \vec{a} wird nun folgendermaßen dargestellt: $\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z + \vec{$

 \vec{a}_x , \vec{a}_y und \vec{a}_z sind die **Vektorkoordinaten** (oder die **skalaren Vektorkomponenten**) von \vec{a} . Mit den Einheitsvektoren wird eine feste Basis des Koordinatensystems gebildet.

Dadurch ist der Vektor \vec{a} in Komponentendarstellung eindeutig durch die Vektorkoordinaten

 \vec{a}_x , \vec{a}_y und \vec{a}_z bestimmt, das in der symbolischen Form wie folgt geschrieben wird:

 $\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z = a_x \vec{e}_x + a_y \vec{e}_y + a_z \vec{e}_z = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$, also mit einen so genannten **Spaltenvektor**.